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V-waves, bow shocks, and wakes in supercritical
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The structure of the bow shock, V-wave, and the related wave drag and wake in
supercritical ambient flow are investigated for homogeneous hydrostatic single-layer
flow with a free surface over an isolated two-dimensional (i.e. h(x, y)) obstacle. The
two control parameters for this physical system are the ratio of obstacle height to
fluid depth and the Froude number F = U/

√
gH . Based on theoretical analysis and

numerical modelling, a steady-state regime diagram is constructed for supercritical
flow. This study suggests that supercritical flow may have an upstream bow shock
with a transition from the supercritical state to the subcritical state near the centreline,
and a V-shock in the lee without a state transition. Unlike subcritical flow, neither
a flank shock nor a normal lee shock is observed, due to the local supercritical
environment. Both the bow shock and V-shock are dissipative and reduce the Bernoulli
constant, but the vorticity generation is very weak in comparison with subcritical
ambient flow. Thus, in supercritical flow, wakes are weak and eddy shedding is
absent.

Formulae for V-wave shape and V-wave drag are given using linear theory. Both
formulae compare well with numerical model runs for small obstacles.

These results can be applied to air flow over mountains, river hydraulics and coastal
ocean currents with bottom topographies.

1. Introduction
Over the last five years, irrotational shallow water flow over an isolated two-

dimensional (i.e. h(x, y)) bump has been well studied with respect to atmospheric
applications (Schär & Smith 1993a, subsequently referred to herein as SS93a; Schär
& Smith 1993b; Grubišić, Smith & Schär 1995; Smith & Smith 1995; Smith et al.
1997; Pan & Smith 1999). It has been demonstrated that a single-layer shallow water
model can capture phenomena such as long wakes in the lee of obstacles, quasi-
steady vortices, and vortex shedding, which have been observed in the atmosphere.
With realistic parameters, a single-layer shallow water model as a representation of
stratified air flow has even made some reasonable quantitative predictions such as
vortex shedding period (Schär & Smith 1993b; Schär & Durran 1997) and wake
length (Smith et al. 1997).

All these studies assumed that the environmental flow is subcritical. That is, the
ambient flow speed is less than the long wave speed for gravity waves (F∞ < 1).
Therefore, if the ambient flow is accelerated by the terrain and becomes locally
supercritical, it is still embedded in subcritical flow. In this situation, normal jumps
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can form on the lee slope or flanks of the obstacles which dissipate energy, reduce the
Bernoulli constant, and generate potential vorticity. It has been shown recently that
the consideration of wavebreaking-induced potential vorticity generation is a useful
approach to understanding the downstream effect of mountains. Further discussion
of this issue can be found in Haynes & McIntyre (1987), Smith (1989), Schär (1993),
and SS93a.

In this study, we extend previous work into the supercritical range. Our primary
interests are the linear wave response, wave drag, finite-amplitude wave structure,
and the wavebreaking mechanism for vorticity generation. In practice, we limit our
attention to Froude numbers in the range 1.2 < F < 3.

One motivation for this work comes from our study of multi-layer models of
atmospheric flow. While the real atmosphere is often continuously stratified, it may
occasionally have a layered structure due to inversions. It is quite common that as air
flows over the cold sea surface, a shallow marine atmospheric boundary layer (MABL)
may develop underneath a low-level inversion. To some extent, these inversions
decouple the MABL from the free atmosphere (i.e. the air above the MABL), which
allows us to treat the MABL as a single-layer flow with an appropriately reduced
gravity.

For instance, the shallow marine atmospheric boundary layer under a low-level
inversion along the California coast has been treated as a supercritical hydrostatic
flow with a side wall by Samelson (1992) and Samelson & Lentz (1994). As an
estimation, given a depth of the MABL of around 300 m, the reduced gravity can be
expressed as g′ = gθ′/θ where θ is the potential temperature and θ′ is the potential
temperature difference across the inversion. Given θ′ = 3.0 K and θ = 300 K, the
hydrostatic surface wave speed is about 5.5 m s−1. A common wind speed such as
10 m s−1 will give Froude number F = 1.8. Their modelling sucessfully captured some
of the features observed in the CODE-2 field experiment. Another example, a striking
long dark band extending from the island of Jan Mayen appearing on a satellite
image (Gjevik & Marthinsen 1978), was later identified as supercritical wave (Baines
1995). The estimated Froude number for this case was 1.6.

Supercritical dynamics can also be found in river flow and coastal currents. For
example, a 2 m deep river gives a hydrostatic wave speed of 4.4 m s−1, which can be
exceeded by a river flow in flood. Even ocean currents can be locally supercritical
in coastal seas due to ocean thermoclines. For instance, a layered structure can be
observed in Long Island Sound (Wilson 1976). The reduced gravity can be estimated
as g′ = gρ′/ρ where ρ is the current density and ρ′ is the density difference across the
thermoclines. Given ρ′/ρ = 0.005, flow depth H = 10 m, the resulting wave speed is
0.7 m s−1, which can be well below tidal flow speed (∼1–3 m s−1).

A brief discussion of the qualitative features of supercritical shallow water flow
over a two-dimensional bump was given in Baines (1995), mainly based on the
comparison with compressible aerodynamics. Much earlier, supercritical flow over
one-dimensional topography (i.e. h(x)) was experimentally and theoretically explored
(Long 1954, 1970; Houghton & Kasahara 1968). A recent analysis of one-dimensional
hydraulics is given by Broad (1997) and Baines (1995). The hydrostatic wave drag
has been studied by Tuck (1966) with a ship-like slender body on the free surface.

The outline of this paper is as follows: § 2 contains some linear theory predictions.
In § 3, a regime diagram is constructed based on the theoretical considerations and
numerical simulations. Supercritical wave drag is discussed in § 4. In § 5, the structure
of the bow shock and V-shock, and vorticity generation are analysed. This study is
summarized in § 6.
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2. Linear theory of V-waves
2.1. Shallow water equations

In the inviscid and hydrostatic limit, the governing equations for single-layer shallow
water flow with a free surface are as follows (Stoker 1957, p. 32):

Du

Dt
+ g′(h+H)x = 0, (1)

Dv

Dt
+ g′(h+H)y = 0, (2)

DH

Dt
+H(ux + vy) = 0, (3)

where (u, v) is the horizontal velocity field, H is the flow depth, h is the bottom
elevation, and g′ is the reduced gravity. System (1)–(3) is known as Airy’s theory, long
wave theory, or shallow water theory.

It should be emphasized that while shallow water theory can greatly simplify
problems, its limitation is also well known. Equations (1)–(3) are only valid in the
limit of

(H/L)2 � 1 (4)

where L is the horizontal scale. Otherwise the dispersion ignored in system (1)–(3)
can be important. If the horizontal scale L chosen as the length scale of perturbation
source satisfies (4), the shallow water assumption may often be valid. However, as
is well known, nonlinear processes can generate higher-order harmonic or shorter
waves, which bring in smaller horizontal scales. Thus, a further justification for using
the hydrostatic assumption for nonlinear waves will be required (§ 3).

2.2. Linear solution

For a steady-state flow with bottom elevation h(x, y), the linearized equations can be
written as

U∞ux = −g′ηx, (5)

U∞vx = −g′ηy, (6)

U∞ηx +H∞(ux + vy) = U∞hx, (7)

where H∞ is the reference flow depth, U∞ is the reference velocity, u and v are the
perturbation velocities, which satisfy |u, v| � U∞, and η is the departure of the free
surface elevation from the reference state, which satisfies η � H∞.

Combining (5), (6), and (7) to eliminate u and v, gives

F2
∞(h− η)xx = −∇2η (8)

For supercritical flow, this is a hyperbolic equation. The solution can be obtained by
the Green’s function method (see Appendix A):

η(x, y) =
F2∞

2
√
F2∞ − 1

∂

∂x

{∫ y

−∞
h(x−√F2∞ − 1(y − y0), y0) dy0

+

∫ ∞
y

h(x+
√
F2∞ − 1(y − y0), y0) dy0

}
. (9)

Equation (9) corrects a recent solution given by Baines (1995) which has a similar form
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Figure 1. Linear solution to the steady-state single-layer supercritical flow given by (12).
Free surface height is contoured for M = 0.1, F∞ = 1.6.

to (9) except the integration interval is (−∞,∞) (Baines, personal communication).
Baines’ solution satisfies (8) only if hxx = 0.

The idealized obstacle used in this study is a circular topography described by two
parameters: the maximum mountain height hm and half-width a (Wurtele 1957 and
Smith 1980):

h(x, y) =
hm

[1 + (x/a)2 + (y/a)2]
3/2

(10)

or in non-dimensional form

h(x, y) =
M

[1 + x2 + y2]
3/2
, (11)

where M = hm/H∞, (x, y) is non-dimensionalized with a. From (9) and (11), we obtain

η(x, y) = −AM
B

{
Ax− By

[1 + (Ax− By)2]2
+

Ax+ By

[1 + (Ax+ By)2]2

}
− Mx

2B(1 + R2)3/2

{
Bx− Ay

1 + (Ax+ By)2
+

Bx+ Ay

1 + (Ax− By)2

}
+

M

2(1 + R2)1/2

{
1

(1 + (Ax+ By)2)2
+

1

(1 + (Ax− By)2)2

}
+

M

2B(1 + R2)1/2

{
(Ax+ By)(−ABx+ B2y + 2A2y)

[1 + (Ax+ By)2]2

+
(By − Ax)(ABx+ B2y + 2A2y)

[1 + (Ax− By)2]2

}
, (12)

where A = sin α0, B = cos α0, and α0 = arcsin (F−1∞ ) is the Mach angle. For M = 0.1,
F∞ = 1.6, the solution (12) is contoured in figure 1.

Note that as (x, y) → ∞ with x > 0, some of the terms in (12) will vanish, and
we are left with stationary waves extending to infinity at the Mach angle from the
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Figure 2. Linear solutions for free surface height compared to a numerical model. Normalized (by
hm) V-wave amplitude versus downstream distance x for fixed y = 5 and different mountain heights:
M = 0.001, 0.02, 0.4, 1.0. The solid curve is the linear solution (12).

upstream flow direction. For a symmetric topography, there are two separated beams,
which are symmetric around the centreline in the shape of a V. For simplicity, we call
it a V-wave.

Far downstream of the bump, an asymptotic solution can be expressed in local
coordinates. Let x = xL−Aξ and y = yL +Bξ be substituted into terms with Ax−By
in the denominator, and x = xR −Aς and y = yR +Bς be substituted into terms with
Ax + By, where (xL, yL), (xR, yR) are points projected on the Mach lines emanating
from the origin. The local coordinates ξ, ς are the distances from the point (x, y) to
the V-wave axes (xL, yL) and (xR, yR), respectively. As x→∞, the asymptotic form of
(12) is

η(ξ, ς) =
2M√
F2∞ − 1

[
ξ

(1 + ξ2)2
+

ς

(1 + ς2)2

]
. (13)

Solutions (12) and (13) can be used to test the numerical model described in
§ 3. In figure 2, the linear solution is compared to numerical runs for F∞ = 1.6,
and various mountain heights. When the hill is small (M � 1), the linear solution
agrees well with numerical runs. As the hill height increases, the V-wave close to the
topography gradually becomes steeper due to nonlinearity. The leading edge steepens,
moves forward and becomes a bow shock, while the trailing edge steepens, moves
downstream, and becomes an oblique shock (figure 2). In compressible gas dynamics,
this pattern is called an N wave (e.g. Whitham 1974, p. 48).

Using a similar technique, we can obtain the solution for an elliptical hill of the
form

h(x, y) =
hm

[1 + (x/a)2 + (y/b)2]3/2
. (14)
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The far-field asymptotic solution for an elliptical hill becomes

η(ξ, ς) =
2Mc√
F2∞ − 1

[
ξ

(1 + c2ξ2)2
+

ς

(1 + c2ς2)2

]
, (15)

where c = A2/a+ B2/b. The full solution can be seen in Appendix A.

3. Nonlinear simulations
3.1. The SWM model

3.1.1. Modelling steepened waves as discontinuities

Even if condition (4) is satisfied, the slope of the steepened shallow water wave can
be so large that the hydrostatic assumption becomes locally invalid. One approach
to this problem is to expand the full non-hydrostatic (Euler) equation in two small
parameters (i.e. A/H and H/L, where A is the nonlinear wave amplitude), and keep
the leading terms to different orders. Depending on the details of the procedure,
this approach gives a variety of equations governing weakly nonlinear and dispersive
waves such as the Boussinesq equation (Whitham 1974; Wu 1987), the KdV equation
(Korteweg & Vries 1895; Peregrine 1968; and Bona, Prichard & Scott 1981), the
intermediate-long-wave (ILW) equation (Joseph 1977; Kubota, Ko & Dobbs 1978),
and the Benjamin-Ono (B-O) equation (Whitham 1974). An advantage of this type of
formulations is that analytical solutions, such as the famous solitary wave solution,
can be derived. It also allows transcritical flow (F∞ ∼ 1) to be treated analytically.

Another approach to the nonlinear wave steepening and wavebreaking issue is
hydraulic theory. The wavebreaking region is treated as a discontinuity governed by
mass and momentum conservation, i.e. Airy’s theory. As pointed out by Mei (1989),
this approach is probably inadequate for the prediction of initial wavebreaking,
but relevant to the events after breaking. This approach can even be justified for
dissipative undular bores. The speed and amplitude of propagating undular bores
observed in laboratory channels can be well described using hydraulic theory (e.g.
Binnie & Orkney 1955). Also, as observed in the laboratory, the amplitude of the bore
undulation decreases with distance from the leading edge and, provided there is no
other forcing, it eventually reaches a uniform equilibrium state. Instead of describing
the detailed structure of undular bores, hydraulic theory imposes a restriction on
the downstream equilibrium state using conservation laws. In summary, hydraulic
theory may not be appropriate to describe the precise pre-wavebreaking processes
or the detailed structure in the wavebreaking region: however, it can describe the
flow downstream of the wavebreaking region. Compared with the weakly nonlinear
approach, the advantage of hydraulic theory is that a fully nonlinear problem can be
treated in a simple analytical way (Stoker 1957).

3.1.2. Modelling the internal dissipation in a hydraulic jump

The shallow water model (SWM) used here was developed by Schär & Smith
(1993a, b). The governing equations are the full shallow water equations (1)–(3) in
non-dimensional form,

Dv

Dt
+ ∇(h+H) =

1

Re
∇2v, (16)

DH

Dt
+H∇ · v = 0, (17)
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where v = (u, v) is the velocity vector, and Re = νa/U∞ is the Reynolds number
based on the mountain width. The following scales have been used: the half-width of
obstacle a for horizontal length scale, the upstream depth H∞ for the vertical scale,
upstream gravity wave speed

√
g′H∞ for the horizontal velocity scale and a/

√
g′H∞

for the time scale.
Equations (16)–(17) can be written in flux form (SS93a),

∂V

∂t
+ ∇ · (vV ) +H∇(h+H) =

1

Re
∇ · (H∇v), (18)

where V = Hv is the vertically integrated momentum, or momentum flux. The
velocity field is derived from the diagnostic relation v = V /H . A critical issue in
the modelling of hydraulic jumps is the simulation of the internal dissipation which
occurs in shocks. There are two types of dissipation in the SWM: explicit viscosity
and numerical viscosity. For large Reynolds number flow, such as flow in the ocean
and the atmosphere, we arbitrarily use a small explicit viscosity (Re = 2000 in our
simulations) to slightly smooth the flow field. Hence, the dominant dissipative effect
in our simulations is numerical.

In the model, equations (17)–(18) are integrated on a rectangular grid. The conser-
vation of vertically integrated momentum and mass is strictly imposed at each time
step. Although systems (16)–(17) and (17)–(18) are equivalent, this equivalence breaks
down near hydraulic jump region in the SWM, where the free surface is so steep that
the flow velocity derived from numerical integration of (17)–(18) cannot satisfy the
momentum equations (16)–(17). The numerical viscosity plays a role in equation (16)
such as an additional dissipative force (SS93a).

It should be pointed out that because we do not intend to resolve the details in a
shock, it is not necessary to probe the role of the numerical viscosity at grid points
within the shock. For our purposes, the most important issue is to determine the ‘right’
post-shock flow state, which is guaranteed by the momentum/mass conservation law.

An alternative to this approach is to decrease the Reynolds number sufficiently so
that the explicit viscosity will dominate the numerical viscosity. Because the diffusion
term in equation (18) is in flux form, it does not destroy any momentum, and the
mass/momentum conservation law still holds across any hydraulic jump. It has been
shown in previous studies that the SWM predictions of general flow features and
potential vorticity generation were insensitive to Reynolds number (SS93a and Smith
& Smith 1995). Further test runs in this study confirm that over a large range
of Reynolds numbers, although the jump has a tendency to become broader with
increasing viscosity, the end state only changes slightly. The numerical details of this
SWM can be found in SS93a, and Schär & Smolarkiewicz (1996).

3.2. Regime diagram

A large domain size (−40 < x < 60, −60 < y < 60) is chosen to capture the far-field
structure of the bow shock and V-wave, with a spatial resolution DX = DY = 0.2,
and a temporal resolution DT = 0.025. A free advection boundary condition is
used along the lateral boundaries. The variables uH , vH , H , h are represented on a
500× 600 grid.

A circular topography (10) sits in the middle domain. A high topography is
allowed to pierce through the interface. When piercing occurs, the region inside the
interception curve is treated as a ‘dry region’, i.e. zero depth and zero momentum.
Test runs show that the model is numerically stable if the Courant–Friedrich–Levy
criterion is satisfied. The integrations are carried out until a steady state is reached.
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Figure 3. Steady-state regime diagram for shallow water flow past a two-dimensional bump,
with two control parameters: upstream Froude number and dimensionless mountain height. The
subcritical part is taken from SS93a. Some aspects of this diagram have been described by Baines
(1995, p. 85). The dashed line in the upper right neglects Bernoulli loss across the bow shock (19).
The solid upper line is (20). The symbols ‘×’ indicate numerical runs.

The steady-state solutions for hydrostatic flow past an isolated two-dimensional
bump in the absence of bottom friction are determined by two non-dimensional
parameters: the ambient Froude number F∞ and the dimensionless mountain height
M. Therefore the qualitative features of these solutions can be mapped onto a F∞×M
regime diagram.

A regime diagram for subcritical flow (F∞ < 1) has been constructed by SS93a. In
their diagram, the subcritical flow was divided into three regimes: subcritical fore-aft
symmetric flow, locally supercritical flow with normal jump on the lee side, and flow
splitting with flank jumps and reversed flow. The second regime was further divided
into two subregimes: weak jump with a long straight wake and strong jump with wake
eddies. Here we extend their diagram to include supercritical flow. Some speculations
about this diagram have been discussed by Baines (1995, p. 85).

The complete regime diagram is shown as figure 3. The supercritical region has
been divided into three regimes based on a large number of numerical simulations
with differing flow parameters (1.2 < F∞ < 2.0; 0 < M < 3):

V-wave regime. In this regime, which corresponds to flow over a small hill, the
flow is purely supercritical over the whole domain. There is no bow shock in front of
the topography. Contrary to the fore-aft symmetric structure of subcritical flow, there
is a long non-dispersive V-wave on the lee side (figure 4a). The flow in this regime
can be qualitatively described by the linear solution derived in § 2. The flow across the
trailing V-wave decelerates first and then accelerates while passing the trailing part.
On the lee slope of the hill, there is a fast flow region corresponding to a depression
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Figure 4. Steady-state solutions for M = 0.1, F∞ = 1.6 (V-wave regime): (a) free surface height
contours, (b) wind speed contours and wind vectors, (c) local Froude number contours.

of the free surface (figure 4a) and a strong convergence towards the centre due to the
lateral pressure gradient force.

Bow-wave and V-wave regime. This regime corresponds to supercritical flow over a
higher hill. There is a stationary bow shock present in front of the topography (i.e. bow
shock). Near the centreline, flow across the jump becomes subcritical, and is deflected
away from the centreline. After the bow shock, the subcritical flow is smoothly
accelerated back into a supercritical state by the pressure gradient force accompanied
by convergence towards the centreline. The supercritical flow experiences an oblique
jump at the trailing edge of the V-wave beams, and is decelerated again. There is no
state transition found across the trailing V-wave, i.e. the flow is supercritical before
and after the jump. Near the centreline, in the lee side of the obstacle, there is fast
flow with a very thin depth and a large local Froude number (figure 5).

Vorticity generation is found both in front of the topography because of the bow
shock dissipation and on the lee side due to the V-wave dissipation. However, the
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Figure 5. As in figure 4 but for M = 1.0, F∞ = 1.6 (bow-wave and V-wave regime).

vorticity is much smaller (usually by a factor of 100) than the vorticity generated by
the normal lee jumps or flank jumps in subcritical ambient flow (see § 5.4).

Flow splitting regime. In this regime, the topography is so high that the flow is
pierced by the hill (figure 6). As in subcritical flow, there is a stagnation point on the
front slope. However, the most striking features of subcritical flow in the flow splitting
regime, namely flank jumps with strong vorticity generation and reversed flow on the
lee side, never appear in supercritical flow. This is so, even though the flow is highly
supercritical near the hill where the depth goes to zero. It implies that, while a
(normal) jump with state transition is necessary when supercritical flow is surrounded
with subcritical flow, when highly supercritical (F∞ � 1) flow is surrounded with
supercritical flow, a jump is not necessary.

There is a strong bow shock present in front of the obstacle, and a V-wave shock
on the lee side (figure 6). The lee slope, which featured a fast flow region in the other
two regimes, now becomes dry.
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Figure 6. As in figure 5 but for F∞ = 1.6, M = 2.5 (flow splitting regime). The heavy angular
contour downstream of the peak represents the dry region where the velocity has arbitrarily been
set to zero.

The boundary between the flow splitting regime and bow shock regime can be
theoretically determined. For subcritical flow, this regime boundary is determined by
applying the steady-state Bernoulli law along the centreline (SS93a). Considering that
the stagnation point must appear first on the peak, the critical curve can be obtained
by letting u = H = 0 at the peak of the topography:

M = 1 + 1
2
F2
∞. (19)

For a supercritical flow, flow along the centreline may experience an upstream jump
first, which reduces the Bernoulli constant, so that flow splitting will occur for a slightly
lower hill. Applying the normal jump condition to the flow along the centreline, the
Bernoulli loss can be expressed in terms of upstream variables. Along the centreline,
the Bernoulli function should be constant between the upstream jump and the peak
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(see § 5). Again assuming that the stagnation point first appears on the peak, we
obtain the modified critical curve for supercritical flow (Baines 1995, p. 87):

M = 1
2

√
1 + 8F2∞ − 1

4
+

1 +
√

1 + 8F2∞
16F2∞

. (20)

Equation (20) is plotted on figure 3, and (19) is the dashed curve for reference. The
two curves do not differ significantly over the range shown.

4. V-wave drag
4.1. Linear V-wave drag

The presence of a V-wave introduces fore-aft depth and pressure asymmetry above
the topography, giving a net V-wave drag on the topography, even in the absence of
any nonlinearity or shocks. The mountain drag D induced by the linear V-wave for
shallow water flow can be expressed as (Smith 1979)

D =

∫ ∫ ∞
−∞
P ′hx dx dy (21)

where

P ′ = ρgη (22)

is the hydrostatic pressure perturbation, and η is the departure in free surface height
governed by equation (8). Applying a double Fourier transform, drag D can be
expressed as

D = iρg

∫ ∫ ∞
−∞

4π2ĥ(−k, l)kη̂ dk dl (23)

where ĥ(k, l) is the Fourier transform of the topography.

For the topography (11), ĥ(k, l) can be expressed in a closed form (SS93a):

ĥ(k, l) =
M

2π
e−K (24)

where K =
√
k2 + l2. If the integral (23) is evaluated directly, we obtain D = 0,

because the linear solution includes two pairs of V-wave beams, a pair on the lee side
and on the upstream side. The upstream pair is unphysical, as no small-amplitude
waves can propagate upstream in supercritical flow. To eliminate the effect of the
‘upstream V-wave’, we introduce small explicit viscosity into the equations (Queney
1947).

Equation (8) with viscosity becomes

F2
∞(h− η)xx = −52 η + ν 52 (h− η)x (25)

where F2∞ = U2∞/gH∞ is the upstream Froude number, and ν = 1/Re.
Applying a double Fourier transform, the solution can be expressed as

η(x, y) =

∫ ∫ ∞
−∞
η̂(k, l)ei(kx+ly) dk dl (26)

where

η̂(k, l) =
[F2∞ − iνk3/(k2 + l2)]ĥ(k, l)

F2∞ − (k2 + l2)k−2 − iνk3/(k2 + l2)
. (27)
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Figure 7. Dimensionless (by ρg′h2
ma) mountain V-wave drag versus upstream Froude number for

fixed mountain heights: M = 0.1, 0.3, and 1.2. The solid curve is the linear theory prediction.

With (23), (24), and (26), the V-wave drag can be expressed as

D = iρga4

∫ ∫ ∞
−∞

(F2∞ − iνk3/K2)kh2
me−2aK

(F2∞ −K2k−2 − iνk3/K2)
dk dl. (28)

Evaluating (28) for small viscosity (see Appendix B), we obtain D = 0, for F∞ < 1.
That is, linear theory predicts zero drag for subcritical flow (SS93a). The flow pattern
is fore-aft symmetric relative to the obstacle for subcritical flow over small topography.

For F∞ > 1, (28) gives

D =
πρg′h2

maF
−2∞

2
√

1− F−2∞
(29)

or in non-dimensional form (normalized by ρg
′
aH2∞)

D̄ =
πM2F−2∞

2
√

1− F−2∞
. (30)

The numerical solutions with different mountain heights (M = 0.1, 0.3, 1.2) nor-
malized by M2 are plotted on figure 7 as a function of Froude number. Drag (30)
normalized by M2 is represented as a dashed curve for comparison.

For subcritical flow, drag comes from nonlinear transitional flow and hydraulic
jumps; therefore, it cannot be predicted by linear theory. For supercritical flow, when
M is small, the linear theory prediction shows a good agreement with numerical runs.
This agreement becomes poor as M increases.

There is a single-peaked drag structure for all three hill heights with the maximum
drag moving to larger Froude number for higher hills (figure 7). Considering that
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there is no normal shock present in supercritical ambient flow, this tendency suggests
that these two types of drag, the drag due to a normal jump and the V-wave and
bow shock drag, are comparable in the transcritical region (F∞ ∼ 1). More evidence
for this interpretation is given below.

4.2. Drag law comparisons

4.2.1. Comparing with mountain drag on the atmosphere

Mountain wave drag for continuously stratified flow over obstacles has been dis-
cussed previously (e.g. Sawyer 1959; Eliassen & Palm 1960; Blumen 1965; Miles 1969;
Bretherton 1969; Smith 1988; and Grubišić & Smolarkiewicz 1997). For instance, for
deep hydrostatic flow with zero shear and a constant Brunt–Väisälä frequency N,
wave drag on a circular hill of form (10) can be expressed as (Smith 1988)

D =
π

4
ρ0NUah

2
m (31)

where U is horizontal velocity, a is the half-width of the mountain, and hm is the
mountain height. The common proportionality to h2

m in (29) and (31) is a characteristic
of linear theory.

Unlike (31) however, (29) predicts that the drag decreases with increasing flow
velocity. Considering the different drag mechanisms for continuously stratified flow
and single-layer shallow water flow, this difference is not surprising. In continuously
stratified flow, the momentum is transferred vertically (to a level where the wave-
breaking occurs) by vertically propagating waves. In shallow water flow, momentum
is carried away by the horizontal V-wave. Therefore, as applied to the atmosphere,
drag laws (31) and (29) represent the mountain drag on the atmosphere in different
limits. While drag law (31) can be generally applied to uniformly stratified flow, drag
law (29) can be used to describe mountain drag on a shallow flow layer under a
low-level inversion, such as a typical marine boundary layer. The rapid decrease of
the V-wave drag with flow speed will be discussed further in § 4.4.

4.2.2. Comparing with ship drag

The water waves generated by moving perturbation sources such as ships have been
studied extensively. Although forcing produced by a ship is different from that due
to underlying topography, it is believed that ship wave theory is relevant to flow past
topography, i.e. the two forcings generate similar wake or wave patterns. However,
due to the non-hydrostatic effect, for ships in open water, most of the studies focused
on deep water dynamics (i.e. F∞ � 1). The linear theory for the trim and leak of a
shallow water wave on a ship of gentle shape was given by Tuck (1966). The decrease
of wave drag with increasing Froude number has been found in supercritical flow.
Weakly nonlinear and dispersive ship wave drag has been examined by Mei (1976). A
similar single peaked drag function has been identified. However, due to the different
forcing sources, it is difficult to compare with these results in a more quantitative
manner.

4.3. Momentum flux and nonlinear V-wave drag

The drag law (29) can be recovered from the asymptotic linear solution (13) in the
following way. Without a wake, the total V-wave drag on the hill should equal the
total momentum flux across the two beams. The y-directed flux of x-momentum can
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be expressed as

D = 2ρ

∫ ∞
−∞
uvH∞ dx (32)

where the factor 2 is for the two legs of the V-wave, and perturbation velocity (u, v)
can be obtained from linearized momentum equations (5) and (6):

u = −g′η/U∞, (33)

v = g′
B

A
η/U∞. (34)

Combining (32)–(34), we obtain

D =
2ρg′2BH∞
AU2∞

∫ ∞
−∞
η2(x) dx. (35)

or equivalently, in local coordinates

D =
2ρg′2BH∞
AU2∞

∫ ∞
−∞
η2(ξ) dξ. (36)

Using (36) and the asymptotic solution (13), we obtain

D =
πρg′h2

maF
−2∞

2
√

1− F−2∞
. (37)

Drag law (37) is identical with (29). Notice that from (33) and (34), we get u ∝ η/F∞
and as F∞ � 1, v ∝ F∞η. Therefore, using (36), we get D ∝ ∫

η2 dx, independent
of F∞. However, η, the amplitude of the V-wave, decreases with increasing Froude
number (e.g. (13)). Therefore, D decreases as F∞ increases.

Using the asymptotic solution (15), the drag for an elliptical hill, D̂, can be
represented as

D̂ =
8ρg′A2h2

m

cB

∫ ∞
−∞

ξ2

(1 + ξ2)4
dξ (38)

or

D̂ =
πρg′abA2h2

m

2(A2b+ B2a)B
. (39)

For a circular hill with a = b, the drag law (39) reduces to (29) and (37).
Notice, in (39), as b/a → ∞, D̂ → πρg′ah2

m/(2B). The fact that D̂ approaches a
constant as b increases to infinity agrees with the known result that the drag per unit
length of an infinite ridge is zero in linear supercritical flow. Physically, for a long
ridge, V-wave generation and drag only appears near the two ends of the ridge. The
V-wave disturbances from the uniform parts interfere with each other and cancel out.

In the limit of a long and narrow hill oriented with the flow direction (a/b → ∞),

we get D̂ → πρg′bA2h2
m/(2B

3), independent of a. Again, only the ridge ends generate
V-waves and drag.

The formula (39) will become inappropriate when the nonlinearity of the V-wave in-
creases. It is not only that the wave shape changes, but also the wavebreaking will gen-
erate a wake behind the hill with a momentum deficit. However, the nonlinear N-wave
drag contribution can still be estimated by the V-wave momentum flux integral (35).

Assuming that η is a linear function of x across the N-wave, we have η = −2Âx/L,

for | x |6 L/2, where Â is the amplitude of the N-wave, which is a function of Froude



42 Q. Jiang and R. B. Smith

number and mountain height, and L is the length of the N-wave. Using (35), the
momentum flux across the N-wave can be expressed as

DN =
ρg′2H∞BÂ2L

3AU2∞
(40)

or in non-dimensional form,

D̄N =
BÂ2L

3AF2∞
(41)

where D̄N = DN/(ρg
′aH2∞), and Â and L are non-dimensionalized by H∞ and a,

respectively.
Note that both L and Â can be obtained from numerical solutions. For example,

with F∞ = 1.5, M = 1.2, the total drag predicted by the numerical model is D̄N = 2.03.
Along y = 5, we get Â = 0.6, L = 18.2. Substituting into (41), we obtain a momentum
flux across y = ±5 of 1.3 non-dimensional units, which means that 65% of total drag
is put into the wave, and 35% is put into the wake.

4.4. Collective behaviour

The rapid decrease in drag as the Froude number passes unity (figure 7) could give
rise to uncontrolled acceleration or a bistable behaviour in flow systems which are
forced by a fixed pressure gradient or body force. Such behaviour has been widely
discussed in regard to transonic flight, ship design and other fluid dynamical systems
with non-monotonic drag curves. In the present case, the occurrence of catastrophic
acceleration will depend on what other drag mechanisms exist on the fluid and
how the fluid system is constrained. To investigate these issues we parameterize the
non-dimensional drag law in figure 7 by

D̄(F,M) = CMγe−((F−ᾱ)/β̄)2

(42)

where C = 1.6, γ = −0.40, ᾱ(M) = 1 + 0.3
√
M and β̄(M) = 0.6

√
M. This Gaussian

formula (42) approximately describes the height (CMγ), width (β̄), and location (ᾱ)
of the drag peak.

Now consider a layer of fluid, with a free surface, driven by a horizontal pressure
gradient (Px) and resisted by a combination of a quadratic bottom friction and
obstacle drag so that in steady state

PxH = 1
2
ρU2Cd + ρgh2

maN̄D̄(F,M) (43)

where Cd is the bottom friction coefficient, F = U/
√
gH , a is the half-width of the

obstacles and N̄ is the number density of obstacles on the bottom surface.
If the depth H is kept constant, (43) defines a relationship between the driving

pressure gradient and the flow speed: Px(U) or U(Px). Dimensional and numerical
analysis of (42)–(43) indicates that dual steady states will occur when the parameter
K = hmaN̄/Cd > 0.75. Under this condition, the obstacle drag plays a large role rela-
tive to bottom friction, and it drops rapidly enough beyond F = 1 that uncontrolled
acceleration will occur in a small range of slightly supercritical Froude numbers. To
apply this result, consider an atmospheric example with hm = 500 m, a = 1000 m,
Cd = 0.01 and N̄ = 10−8 m−2 (i.e. one obstacle in each 10 km by 10 km square). These
values yield K = 0.5, just below the critical value (0.75). Higher, broader or more
frequent obstacles, or a reduced bottom friction, would increase K and lead to a
bistable system.
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River flows driven by streambed slope and gravity can be treated in a similar way,
but the volume flow rate per unit width Q = UH should be held constant, rather
than the depth H . For certain values of the non-dimensional parameters, two steady
states exist: a deep slow subcritical state and a shallow fast supercritical state.

5. Bow wave structure and vorticity generation
5.1. Bernoulli change and vorticity generation

The irrotational shallow water equations (1)–(3) materially conserve potential vorticity,
i.e.

Dq

Dt
= 0 (44)

where q is the potential vorticity defined as

q = k · (∇× V )/H. (45)

For steady state flow, the Bernoulli function is constant along each streamline:

V · ∇B = 0 (46)

where B is the Bernoulli function defined as (Batchelor 1967)

B = 1
2
V · V + g′(H + h). (47)

SS93a demonstrated that for inviscid flow, equation (44) and equation (46) can only
be violated in a dissipative region such as a hydraulic jump. When a hydraulic
jump forms, the inviscid shallow water equations become incomplete. The internal
dissipation in the jump region reduces the Bernoulli constant and generates potential
vorticity. They called this process Pseudoinviscid vorticity generation to distinguish
it from explicitly viscous flow. In Schär (1993), SS93a, and Smith & Smith (1995),
vertical vorticity generation was directly related to the gradient of the Bernoulli
function as

ζ = − 1

U

∂B

∂n
(48)

where U is the magnitude of velocity, ζ is vertically oriented vorticity, and n is the
direction normal to the flow velocity.

In the remaining part of this section, the bow shock and V-shock will be analysed
in terms of Bernoulli change and vorticity generation.

5.2. The bow shock

For supercritical flow, the non-dispersive infinitesimal x-oriented gravity waves gen-
erated by the topography are advected downstream. Hence, in a steady state, there
is no disturbance found upstream of the obstacle until a finite-amplitude hydraulic
jump forms. The finite-amplitude waves with a larger wave speed can balance the
supercritical flow, and therefore, a stationary bow shock can maintain itself upstream
of the topography. Here we treat the bow shock in front of a two-dimensional bump
as a curved hydraulic jump (figure 8).

If the curvature is not too large, we can assume that the tangential component
(along the jump) of velocity is continuous, while in the direction normal to the jump,
the one-dimensional jump condition is applicable to each short ‘segment’:

UnH = U ′nH
′, (49)
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Figure 8. Notation sketch of a bow wave jump. U is the incoming flow, t̂ is the local orientation
of the jump, and n̂ represents the normal direction.

HU2
n + 1

2
g′H2 = H ′U

′2
n + 1

2
g′H ′2, (50)

where H is flow depth upstream of the jump, Un = U sin θ is the upstream velocity
component normal to the jump, H ′ and U ′n are the corresponding quantities down-
stream of the jump, and θ is the angle between the flow and the local orientation of
the jump (figure 8). The downstream state can be expressed in terms of the upstream
Froude number (F = U/

√
g′H) and the inclination angle θ (Baines 1995, pp. 79–80):

H ′

H
= 1

2
(G− 1) (51)

where

G = (1 + 8F2 sin2 θ)1/2 (52)

and θ > α0, where α0 is the Mach angle. Near the centreline, θ = π/2, and equation
(51) and equation (52) reduce to

2F2 =
H ′

H

(
1 +

H ′

H

)
(53)

which is the normal shock condition.
The Froude number immediately downstream of the normal jump can be expressed

as:

F ′ = F

(
H

H ′

)3/2

=
(
√

1 + 8F2 + 1)3/2

8F2
. (54)

For F > 1, it is easy to show that F ′ < 1. Hence to have a stationary bow shock, the
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flow near the centreline must experience a state transition from supercritical flow to
subcritical flow.

5.3. Vorticity generation

Immediately after a curved jump like a bow shock, the vorticity generated by dissi-
pation can be expressed as (Baines 1995)

ζ = Uk cos θ

(
1 +

1 + G

4GF2 sin2 θ

)
(55)

where θ is the inclination angle, G is defined in (52), and k is the curvature of the
shock. Formula (55) shows how the vorticity behind the shock varies with Froude
number and the shock shape. At the normal position (θ = π/2), cos θ vanishes and
so does the vorticity. Far away from the centreline, θ approaches the Mach angle.
Therefore, the curvature vanishes, and again, the vorticity vanishes.

As an example, consider a hyperbolic-shaped shock given by (Rasmussen 1994,
p. 39),

ys =
√

2Rxs + x2
s /(F

2 − 1). (56)

Here (xs, ys) are local coordinates with the origin (0, 0) at the nose of the shock and R

is the radius of the shock near ys = 0. As xs →∞, (56) reduces to ys/xs = 1/
√
F2 − 1,

which is the Mach angle.
Using (56) to determine k in (55), the normalized (by R/U) vorticity can be

expressed as a function of F and the inclination angle θ. Figure 9 shows the vorticity
generated by these types of shocks with different upstream Froude numbers and
at various inclination angles. Obviously, as F increases, while the maximum scaled
vorticity only varies slightly (between 0.3 and 0.4), the position of maximum vorticity
moves away from the centreline (y = 0), and the vorticity region becomes wider.

Notice that for our idealized bell-shaped hill, R can only be a function of upstream
Froude number and hill height (i.e. F∞ and M). For instance, from numerical runs,
R = 28 for F∞ = 1.2, M = 1.0, R = 14 for F∞ = 1.4, M = 2.2, and R = 7.8
for F∞ = 1.6, M = 1.0. Therefore, we can estimate that the maximum vorticity from
figure 9, will be approximately 0.04, 0.11, and 0.19, respectively. Although these values
are small, the numerical solutions suggests that R decreases rapidly with increasing
Froude number, and R is not very sensitive to hill height. Thus, for hypercritical flow
(F∞ � 1), strong wake vorticity could be generated by a highly curved bow shock.

The weak vorticity generation found for moderately supercritical Froude numbers
implies that the wake will be absolutely stable and no eddy shedding will occur (Schär
& Smith 1993b).

5.4. Oblique shocks and V-wave breaking

Assume now that apart from the centreline, each leg of the trailing wave can be
treated as an oblique shock, satisfying (51) and (52). For a V-wave shock with a
Mach angle, i.e. α0 = arcsin (Fr−1∞ ), (51) and (52) predict H ′/H = 1, i.e. a linear
V-wave without discontinuity. If the V-wave has a small departure from the Mach
angle, i.e.

θ = α0 + ε (57)

and ε� 1, to the first order of ε, we have, using (51)

H ′

H
= 1 + 4

3
ε
√
F2 − 1. (58)
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Figure 9. Vorticity generation after a bow shock assuming a hyperbolic shape (56).
Vorticity is scaled with R/U.

Using (47) and (58), Bernoulli change will be,

δB = − 4
3
Hε(F2 − 1)3/2. (59)

After a dissipative jump, δB < 0, therefore ε > 0, suggesting that nonlinear V-wave
can only be maintained at an angle larger than the Mach angle. Compared with a
normal shock, the Bernoulli loss after an oblique shock is O(ε) smaller.

The deflection angle across the oblique jump can be derived from the jump condition
(51):

tan θ′ =
tan θ(G− 3)

G− 1 + 2 tan2 θ
. (60)

Notice that G > 3 in (52), therefore θ′ has the same sign as θ, which means that
after a finite bow shock or a V-shock, the flow is always deflected away from the
centreline.

The uppermost supercritical regime in figure 3 is characterized by flow splitting
around the obstacle and a dry zone where the flow depth H = 0. We have shown
that the centre part of the upstream bow shock is equivalent to a normal shock with
state transition. However, no state transition has been found after a V-wave shock
even in high-resolution (DX = DY = 0.05) simulations. This suggests that there is
no normal shock at the intersection point of the left and right V-wave shocks.

On the upstream side, the centre streamline decelerates to a stagnation point (s)
(figure 10). If the depth and speed decrease linearly to zero at this point the Froude
number will approach zero and thus remain subcritical. The lateral flow along the
split streamline immediately becomes supercritical after leaving s, as the depth is
small (or zero).
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Figure 10. Schematic structure of flow splitting and the V-wave for high obstacles in supercritical
flow. The dark region represents hypercritical flow (F � 1) as the fluid depth approaches zero near
the dry zone.

As the flow accelerates laterally away from the stagnation point s, the height of the
split streamline drops according to Bernoulli’s law (46)–(47):

1
2
ρu2 + ρgz = Bc < B∞. (61)

As the split streamline passes around the obstacle, it continues to drop in altitude
and the fluid speed increases.

The downstream end of the dry zone has an intersecting point i. As this point
occurs at a lower altitude than the upstream stagnation point s, its velocity must be
non-zero. Therefore, from (46) and (47), it is not a stagnation point. Supercritical
flow converges toward the centreline and, in the vicinity of i, is shocked into a x-axis-
parallel flow by a finite-amplitude V-jump. Thus the point i is singular as it is the
intersection of the dry zone, two converging supercritical streams, two V-jumps, and
a region of finite-depth axis-parallel supercritical flow.

A similar lee-side V-shock intersection is found in the middle supercritical regime
(figure 3). Unlike the dry case however, a centreline flow which passed over the obstacle
approaches the intersection (figure 5). Our numerical solutions show no evidence of
subcritical flow downstream of the intersection and thus no support for the existence
of a normal shock. There is however a Bernoulli drop along the centreline across
the V-shock intersection. Consider this example. For F∞ = 1.4, M = 1.0, we take
two sections (x = const) immediately after the bow shock and V-shock respectively;
the normalized (by the upstream value) Bernoulli function is plotted as a function
of cross-stream distance (figure 11). A subcritical case (F = 0.8, M = 0.6) is also
plotted for comparison. For this special case, the V-wave shock introduces larger
Bernoulli loss than the bow shock does, and concentrated in a smaller region around
the centreline. In fact, the width of the loss zone is barely resolved on our grid.
The distribution of Bernoulli loss after a V-wave suggests that there may be a
finite-amplitude shock at the intersection point of the left and right V-waves. If the
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Figure 11. Cross-section plot of normalized (by their appropriate far upstream values) Bernoulli
function for F∞ = 1.4, M = 1.0, at x = −1.5 (after the bow shock), and x = 2.5 (after the V-wave
shock). The solid curve is the same quantity (with a different scale) after a normal jump for
subcritical flow: F∞ = 0.5, M = 0.6, x = 2.5. Cross-stream gradients in B are related to vertical
vorticity according to (48).

incoming flow in front of the V-wave is parallel, a finite V-wave shock would induce
finite deflection away from the centreline. The centre streamline will split and a dry
wedge will appear downstream of the V-wave (e.g. Liepmann & Roshko 1967). This
has not been observed. Therefore, if the shocks at the intersection are finite, the
incoming flow cannot be parallel, and must have a non-zero component towards the
centreline. The straightness of the V-shock (figure 5) is due to a cancellation of two
lateral gradients in the approaching flow along the shock: decreasing Froude number
and increasing velocity component toward the centreline. Downstream of the V-shock
intersection, the flow appears to be parallel and uniform.

6. Conclusions
The structure and behaviour of both linear and nonlinear waves, and related

drag and vorticity generation, are investigated within the framework of free surface
shallow water flow over an isolated hill. In the absence of bottom friction and ambient
rotation, there are only two controlling parameters for this system: upstream Froude
number F∞ and non-dimensional hill height M.

As F∞ approaches 1, the drag increases rapidly due to nonlinear transcritical flow.
A lee-slope normal jump creates a strong wake with large Bernoulli deficit and
vorticity generation. As F∞ increases past 1, the drag is still high, perhaps even
higher; however, the drag is due to the nonlinear V-waves. The lee-slope normal jump
disappears. Numerical runs show that the contribution from the momentum deficit in
the wake and from the transport of momentum out of the domain by V-waves are of



V-waves, bow shocks and wakes in supercritical flow 49

the same order. The bow shocks and oblique lee shocks, if present, generate a broad
but weak wake with little vorticity generation. No eddy shedding is seen.

For high hills, with ‘dry’ peaks, the flank shocks disappear when F∞ > 1. This
is so because not only the shallow edge flow, but also the deeper environment, is
supercritical. The existence of a bow shock does not make the local environment of the
hill subcritical. The shocked subcritical flow is quickly brought back to supercritical
by turning around the obstacle.

When F∞ increases further, the drag drops rapidly and the contribution from the
momentum deficit in the wake vanishes. The drag is well represented by the linear
theory of V-waves. A closed form expression is derived for both V-wave structure
and drag for a circular hill, and further generalized to include a family of elliptical
hills. The rapid decrease in drag in low supercritical conditions can cause run-away
accelerations or bi-state behaviour in momentum forced systems.

As F∞ increases to 2 and beyond, moderately high obstacles shift into the submerged
regime and eventually into the regime with no bow shocks. The V-waves become very
oblique, trailing almost like a wake.

For high obstacles, increasing F∞ causes the bow shock to become stronger and
more curved. Under these conditions, the bow shock can generate significant wake
vorticity.

These results can be applied to atmospheric flows, as well as river and coastal flow
with bottom topography, when the assumptions of our analysis are satisfied. Several
of our results could be tested in laboratory flume experiments, with care taken to
keep the flow in the hydrostatic regime.

Christoph Schär kindly allowed us to use his shallow water code. This research was
supported by the National Science Foundation, Division of Atmospheric Sciences
(ATM-9711076)

Appendix A. The derivation of solution (9)
The Green’s function for equation (8) for an infinite domain can be expressed as

(Morse & Feshbach 1953, p. 843):

G(x, y | x0, y0) = 2π
√
F2∞ − 1[1− w(

√
F2∞ − 1|y − y0| − (x− x0)] (A 1)

where w(z) = 1 when z > 0, otherwise w(z) = 0. Equation (A 1) suggests that each
point source has a uniform influence on the downstream domain within the Mach
angle.

The solution of (8) can be expressed as (Morse and Feshbach, 1953)

η(x, y) =
F2∞

4π
√
F2∞ − 1

∫ ∞
−∞

∫ ∞
−∞
G(x, y | x0, y0)hxx(x0, y0) dx0 dy0. (A 2)

Consider the influence of a point source (x0, y0) on a field point (x, y). For a fixed
y0, if y0 > y, the point source has influence (i.e. G(x, y | x0, y0) = 2π

√
F2∞ − 1) on

(x, y), only when −∞ < x0 < x +
√
F2∞ − 1(y − y0). Otherwise this source has no

influence (i.e. G(x, y | x0, y0) = 0) on (x, y). Similarly, for a fixed y0, if y0 < y, the point

source has influence on (x, y), only when −∞ < x0 < x−√F2∞ − 1(y− y0). Otherwise
this source has no influence on (x, y).
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Therefore, (A 2) can be expressed as

η(x, y) =
1

2

∫ y

−∞
dy0

∫ x−
√
F2∞−1(y−y0)

−∞
hxx(x0, y0) dx0

+
1

2

∫ ∞
y

dy0

∫ x+
√
F2∞−1(y−y0)

−∞
hxx(x0, y0) dx0. (A 3)

Using hx(−∞, y0) = 0, we get the solution to (8):

η(x, y) =
F2∞√
F2∞ − 1

∂

∂x

{∫ y

−∞
h(x+

√
F2∞ − 1(y − y0), y0) dy0

+

∫ ∞
y

h(x−√F2∞ − 1(y − y0), y0) dy0

}
. (A 4)

Substituting the elliptical hill (14) into (A 4), we obtain

η(x, y) = −AM
B

{
Ax/a− By/b

[1 + (Ax/a− By/b)2]2
+

Ax/a+ By/b

[1 + (Ax/a+ By/b)2]2

}
− Mx/a

2B(1 + R2)3/2

{
Bx/a− Ay/b

1 + (Ax/a+ By/b)2
+

Bx/a+ Ay/b

1 + (Ax/a− By/b)2

}
+

M

2(1 + R2)1/2

{
1

(1 + (Ax/a+ By/b)2)2
+

1

(1 + (Ax/a− By/b)2)2

}
+

M

2B(1 + R2)1/2

{
(Ax/a+ By/b)(−ABx/a+ B2y/b+ 2A2y/b)

[1 + (Ax/a+ By/b)2]2

+
(By/b− Ax/a)(ABx/a+ B2y/b+ 2A2y/b)

[1 + (Ax/a− By/b)2]2

}
. (A 5)

Here R2 = (x/a)2 + (y/b)2, and A,B are defined in § 2.

Appendix B. Contour integration of (28)
Using the following transformation: k = K cos θ, l = K sin θ, integral (28) can be

expressed in cylindrical coordinates (K,ψ) as

D = iρga4

(∫ ∞
0

∫ 2π

0

F2∞K2 cos2 θ

F2∞ cos2 θ − 1− iνK cos3 θ
e−2aK dθ dK

−
∫ ∫ ∞

−∞
iνK3 cos θe−2aK

F2∞ cos2 θ − 1− iνK cos3 θ
e−2aK dθ dK

)
. (B 1)

For small friction (ν � 1), the contribution of the second term is negligible.

Considering e−2aK → 0, as K → ∞, the integral can be approximated by
∫ Kc

0
dK ,

where Kc > 0 is certain finite value. Therefore, the quantity νK cos2 θ is positive
but can be arbitrarily small, hence, we can replace this term by a small quantity ε;
0 < ε� 1.

Integral (B 1) becomes

D = iρga4

∫ ∞
0

K2e−2aK dK

∫ 2π

0

F2∞ cos3 θ

F2∞ cos2 θ − 1− iε cos θ
dθ (B 2)
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Figure 12. Sketch of contour integral for linear theory drag. Symbols × represent singular points.

or

D =
i

4
ρgah2

mI (B 3)

where

I =

∫ 2π

0

F2∞ cos3 θ

F2∞ cos2 θ − 1− iε cos θ
dθ. (B 4)

To use contour integration, we transform the integral variable: z = eiθ , so that

I =

∮
dz

2iz2

(z2 + 1)3

(z2 + 1)2 − 2izε(z2 + 1)− F−2∞ (2z)2
. (B 5)

The integrand in (B 5) has five poles:

z1∼4 = 0.5iε∓ F−1
∞ ±

√
F−2∞ − 1, (B 6)

z5 = 0; (B 7)

z1–z4 are simple poles and z5 is a pole of second order. For F∞ < 1, the distribution
of these poles are as figure 12. Therefore,

I = 2πi(res (z3) + res (z4) + res (z5)). (B 8)

Evaluating these residues at ε→ 0, we get

D = 0 (B 9)

for F∞ < 1. For F∞ > 1, the distribution of these poles is schematically plotted on
figure 12.

Notice with ε = 0, z1–z4 are on the unit circle and symmetric relative to the centre
of the circle, and the sum of the four residues is zero. With ε > 0 ( positively defined
viscosity ), z3 and z4 move into the circle, and z1 and z2 move out of the circle.
Physically, z3 and z4 represent the contribution of the two legs of the downstream
V-wave poles; z1 and z2 represent the contribution of the two legs of the upstream
V-wave, which is removed by the introduction of small friction.

Notice that for ε→ 0, z1 ∼ z4 can be rewritten as

z1 = ei(π/2−α0), z2 = ei(π/2+α0), z3 = ei(3π/2−α0), z4 = ei(3π/2+α0). (B 10)
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Using (B 10), we have

res (z5) =
d

dz

(
(z2 + 1)3

2i((z2 + 1)2 − F−2∞ (2z)2)

)∣∣∣∣
z=0

= 0, (B 11)

res (z3) = res (z4) = − sin2 α0

2 cos α0

. (B 12)

Substituting (B 11) and (B 12) into (B 8), we get

I = −2πi
sin2 α0

cos α0

. (B 13)

Finally we get the formula for V-wave mountain drag:

D =
πρgh2

maF
−2∞

2
√

1− F−2∞
. (B 14)
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